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Overview of presentation
� Goal -  assess uncertainty in alpha curves
� Rossi technique for recording time-dependent signals
� Uncertainties in reading Rossi traces � likelihood
� Model - alpha as function of time, then calculate data
� Bayesian data analysis -

   posterior provides inference about model parameters
� Markov Chain Monte Carlo technique -

   display and quantify uncertainty distribution
� Uncertainties in alpha curve
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Alpha - measure of criticality
� Assembly of radiographic, fissionable material can

become critical, i.e. neutron fluxes can grow exponentially
� If y(t) is neutron flux as function of time, the �Rossi� α is

measure of extent of criticality:

� Objective is to infer α(t) from measurements of �Rossi�
traces, y(cos(t))

� Use of Bayesian analysis, coupled with MCMC technique,
allows full assessment of uncertainties in inference,
including effect of systematic uncertainties
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Standard amplitude vs. time recording

� Objective is to accurately record an exponentially rising
signal

� Standard technique is to
photograph CRT screen
� horizontal sweep linear

in time
� signal amplitude vertical

� CRT nonlinearities and
errors in orientation lead to
errors in measurement of
amplitude vs. time
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The Rossi technique

� Rossi technique -
photograph oscilloscope
screen
� horizontal sweep is driven

sinusoidally in time
� signal amplitude vertical

� Records rapidly increasing
signal while keeping trace
in middle of CRT, which
minimizes nonlinearities x x tR R= +cos( )2 0π φf
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Reading a Rossi trace

� Technician reads points by centering cross hairs of a
reticule on trace; computer records positions, {xi, yi}

� Points are read:
� approximately evenly spaced along trace
� otherwise arbitrary placement along curve, except at peaks
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Uncertainties in Rossi readings

� Readings obtained by centering cross hairs on trace
� Uncertainties in location of trace

� depend on width of trace and signal-to-noise ratio
� perpendicular to trace (position along trace arbitrarily chosen)
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Uncertainties in Rossi readings

� Near peaks, intensity varies because it depends on speed
at which electron beam moves over CRT phosphor

� Uncertainties in placement
� mainly in horizontal direction
� larger than in regions where trace is more straight
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Cubic spline expansion of alpha curve
� Expand α(t) in terms of basis

functions:

where
�  ak is the expansion coefficient,
�   φ is a spline basis function,
�   tk is the position of the kth knot
�  ∆t is the knot spacing

� Use 15 evenly-space knots
� spacing chosen on basis of

limited bandwidth of signal y
� two are outside data interval to

avoid special end conditions
� Parameters ak are to be determined

α φ( )t a t t
tk

k

k
= −� ∆

Alpha(time)
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Modeling the Rossi data
�  α(t) represented as cubic spline
� measurement model predicts data
� include systematic effects of measurement system, y0 and xR

Alpha(time) x-y data

xR, x amplitude$
y0

$

Measurement
Model

$systematic effects
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Likelihood model - uncertainties in Rossi data

� minus-log-likelihood, p(d|a), for measured point (xexp , yexp):

where                         is the model point closest to (xexp, yexp)

∆ χ
σ σ
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Likelihood model

� Potential problem with
taking distance to nearest
point on curve
� points may be measured in a

specific order
� when curve is shifted, order

of points may get mixed up;
leads to discontinuities in Λ

� Potential remedy is to
constrain reference points
on curve to maintain order
of measured points
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Cubic spline expansion
� Expand α(t) in terms of basis functions:

where ak is the expansion coefficient,
                 φ is a spline basis function,
            tk is the position of the kth knot, and
           ∆t is the knot spacing

� Parameters ak are to be determined

α φ( )t a t t
tk
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Bayesian analysis of an experiment
� The pdf describing uncertainties in model parameter

vector a, called posterior:
�         p(a|d) ~ p(d|d*) p(a)         (Bayes law)

   where d is vector of measurements, and
   d*(a) is measurement vector predicted by model

� p(d|d*) is likelihood, probability of measurements d given the
values d* predicted by simulation of experiment

� p(a) is prior; summarizes previous knowledge of a
� �best� parameters estimated by

� maximizing posterior (called MAP solution)
� mean of posterior

� uncertainties in a are fully characterized by p(a|d)
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Smoothness constraint
� Cubic splines tend to oscillate in some applications
� Smoothness of α(t) can be controlled by minimizing

                       S(α) = T3 �         dt

where T is the interval; T3 factor removes T dependence
� Smoothness can be incorporated in Bayesian context by

setting prior on spline coefficients to
       - log p(a) = λ S(α(a))

� Hyperparameter λ can be determined in Bayesian
approach by maximizing p(λ|d)

d
dt
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Bayesian posterior
� The full Bayesian posterior for spline coefficients in

Rossi analysis is

where first term comes from baseline y0 measurement,
           second from (x, y) measurements of Rossi trace,
           last from prior on smoothness

� All inferences about α(t) are based on this posterior
� Data d: {xi , yi}, points from Rossi trace; y0, y baseline
� Parameters a: {ak}, knot coefficients; y0, y baseline;

 xR, amplitude of Rossi sweep
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Likelihood model
� Log-likelihood contributions:

� sum over all measured
(xexp,yexp) points

� measured baseline, y0

� Model parameters:
� Rossi frequency and t0

� y0, baseline for y amplitude $

� xR, x amplitude $

� y(t) modeled as cubic spline
with equal node spacing,
chosen on basis of bandwidth
of signal

$systematic effects
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Parameter uncertainties via MCMC
� Posterior p(a    | d) provides full uncertainty distribution for a
� Markov Chain Monte Carlo (MCMC) algorithm generates a

random sequence of parameters that sample p(a    | d)
� results in plausible set of parameters {a}
� variation in plausible set of a is representative of uncertainties
� second moments of parameters can be used to estimate covariance matrix C

� MCMC advantages
� can be applied to any pdf, not just Gaussians
� automatic marginalization over nuisance variables

� MCMC disadvantage
� potentially calculationally demanding
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Markov Chain Monte Carlo

a2

Probability(a1, a2)
accepted step
rejected step

a1

� Metropolis algorithm:
� draw trial step from

symmetric pdf, i.e.,
  T(∆a) =  T(-∆a)

� accept or reject trial step
� simple and generally

applicable
� relies only on calculation

of  target pdf for any a

Generates sequence of random samples from an
arbitrary probability density function
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MCMC - alpha uncertainty

� MCMC samples from
posterior
� plot shows several α(t)

curves consistent with data
� uncertainties in model

visualized as variations in
curves

� Smoothness parameter,
λ = 0.04
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MCMC - Alpha
� For MCMC sequence with

105 samples, image shows
accumulated MCMC curves in
alpha domain

� Effectively shows PDF for
uncertainty distribution in
alpha, estimated from data

� However, does not show
correlations between
uncertainties at two different
times, as do individual MCMC
samples
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MCMC - Alpha
� Interpreting accumulated alpha

curve as a PDF, one can
estimate α(t) in terms of
� posterior mean
� posterior max. (MAP estimate)

� Or characterize uncertainties
� standard deviations
� covariance matrix (correlations)
� credible intervals (envelope)

� Plot on right shows
� posterior mean
� posterior mean +/- standard dev.

(one standard dev. envelope) λ = 0.4 (best value)
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Effect of smoothing prior
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λ = 0.4 (best value)λ = 0.004 (minimal prior)

Splines� tendency to oscillate is controlled by smoothing prior
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Choice of the strength of smoothing prior
� Hyperparameter λ controls

strength of smoothing prior
� chosen by maximizing p(λ|d),

which is proportional to the
evidence
p(d|λ) = � p(a) p(d|a, λ) da
(probability of data, given
model and λ)

� integral often approximated as
peak value of integrand times
its volume, given by the
determinant of the covariance
matrix best value: λ = 0.4
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MCMC - Autocorrelation and Efficiency
� In MCMC sequence, subsequent

parameter values are usually correlated
� Degree of correlation quantified by

autocorrelation function:

  where y(x) is the sequence and l is lag
� For Markov chain, expect exponential

� Sampling efficiency is

� For sequence shown, λ = 170, ε = 0.003
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MCMC - Correlations among Uncertainties

� MCMC sequence can quantify
correlations between uncertainties in
various parameters

� Covariance between parameters:

  where aj(i) is the value of the jth
parameter at the ith sequence step
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MCMC - Issues

� Choice of PDF for trial steps in parameters
� desire improved efficiency in calculation
� would like to incorporate correlations in posterior

� Burn in
� may need to run MCMC for awhile to get in operating

region of posterior distribution

� Convergence of sequence to true PDF
� validity of estimated properties of parameters (covariance)
� accuracy of same
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Conclusions

� Bayesian analysis is a useful way to analyze
experimental data in terms of models

� MCMC provides good tool for exploring the posterior
and hence in drawing inferences about model
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