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Abstract.
We present an uncertainty analysis of data taken using the Rossi technique

in which the horizontal oscilloscope sweep is driven sinusoidally in time while the
vertical axis follows the signal amplitude. The analysis is aimed at determining
the logarithmic derivative of the amplitude as a function of time. Within the
Bayesian framework used, inferences are obtained with the Markov Chain Monte
Carlo technique, which produces random samples from the posterior probability
distribution expressed in terms of the parameters.
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1. Introduction

We present a Bayesian analysis of data acquired using the Rossi technique. This
analysis problem is interesting because the inferred time-dependent signal is not
linearly related to the basic measurements. Rather than seeking the maximum pos-
terior estimate, we will emphasize the probabilistic character of Bayesian analysis
by using Markov Chain Monte Carlo (MCMC) to make inferences. The MCMC
samples from the posterior can be displayed in terms of the inferred signal to visu-
alize its overall uncertainties. The posterior mean estimate of the time-dependent
curve and its uncertainties are obtained.

2. Rossi technique

It often happens that one wants to record a signal that is monotonically increasing
with time. When the signal is supraexponential, most of the amplitude increase
may occur near the end of the time interval being recorded. If the signal is being
recorded on an analog oscilloscope, the trace may fall mostly outside the oscillo-
scope’s central region where its linearity is usually best.
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(a) (b)
Figure 1. (a) A simulated photograph of a Rossi trace on an analog oscilloscope and (b) the
points that might be obtained by manually reading a portion of such a film, compared to the
underlying true Rossi trace.

In the Rossi technique for displaying a time-dependent signal [1], the horizontal
sweep of an analog oscilloscope is driven sinusoidally in time and the vertical
sweep is driven by the signal to be recorded. The major advantage of this unusual
recording technique is that the trace dwells in the central region of the oscilloscope
face, where the linearity of the oscilloscope response is best. The sinusoid signal
also provides a built-in time marker. Figure 1a represents a simulated photograph
of a Rossi oscilloscope trace with these features.

The first step in interpreting the Rossi traces is to read the photograph taken
of the oscilloscope signal. In the reading process a technician manually places
cross hairs over the Rossi trace at a succession of locations. A computer records
the cross-hair positions for subsequent analysis. The points in Fig. 1b show the
kind of data that one might get from such a reading process. Uncertainties in the
positions of the points are included in these simulated data by displacing the true
readings by perturbations in x and y randomly drawn from Gaussian distributions.

We assume that the signal being recorded is band limited and has a known time-
resolution function. To be specific, the frequency response of the input circuitry is
assumed to drop to 50% at the Rossi frequency fR. We do not attempt to recover
frequencies in α(t) higher than 2fR, which would result in the ill-posed problem
of deblurring or signal recovery.
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Figure 2. The contribution to the likelihood for each data point is based on the components of
the shortest vector between the data point and the modeled Rossi curve.

3. Model-based analysis

To establish our notation, the vertical axis in Fig. 1b is proportional to the signal
amplitude, whose time dependence is y(t). The horizontal axis is sinusoidally driven
in time as

x(t) = xR cos [2πfR(t − t0)] , (1)

where fR is the Rossi frequency and t0 is the time at which the Rossi sweep starts.
We assume that t0 and fR are precisely known. We describe the measured points
along the trace as the data set, {xi, yi}.
The aim of the present analysis is to determine from the measurements not

merely y(t), but the relative time rate of change of the signal amplitude as a
function of time:

α(t) =
1
y

dy

dt
. (2)

This quantity, often referred to as the Rossi alpha [2,3], is a measure of the crit-
icality of an assembly of fissile material in which the amplitude signal y is the
measured flux from the assembly. The units of alpha are [t−1].
Our approach is to model the alpha curve in terms of cubic splines. For a

specified α(t), Eq. (2) is integrated to get

y(t) = y0 exp
(∫

α(t) dt

)
, (3)

where y0 is the y amplitude at t = 0, which we assume is known. This y(t), together
with (1), predicts the Rossi curve. Inferences about model parameters are based
on the comparison of the predicted Rossi curve to the {xi, yi} data set.

3.1. UNCERTAINY MODEL FOR THE MEASUREMENTS

Figure 2 shows our approach to assigning the likelihood, which quantifies the
probability of the measurements d for any specified Rossi curve. We propose using
for the minus-log-likelihood

− log[p(d|α(t))] = 1
2
χ2 = 1

2

∑
i

[
(xi − x∗

i )
2

σ2
x

+
(yi − y∗

i )
2

σ2
y

]
, (4)
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where (xi, yi) is the measured position of the ith data point and (x∗
i , y

∗
i ) is the

position of the nearest point on the Rossi curve. The uncertainties in x and y,
given by σx and σy, are assumed to be independent of i. These two uncertainties
may be chosen to be different to allow for larger uncertainties in the peak regions,
where σx dominates, than elsewhere. In any given application, one should confirm
that the likelihood model properly captures the probability distribution of the
actual uncertainties in the data. The quadratic form of this expression comes
from the assumption that the uncertainties follow Gaussian distributions. The sum
over contributions from individual data points is valid only if the uncertainties in
measuring a point are independent of other measurements. Gull [4] used a similar
model for the likelihood to tackle the complex problem of fitting a straight line to
data points that have uncertainties in both x and y.

3.2. SPLINE EXPANSION

We model the function of interest, alpha as a function of time, in terms of cubic
B splines, which are chosen for their smoothness properties. For uniformly spaced
basis functions, we write the continuous alpha curve as

α(t) =
K∑

k=1

ak φ

(
t − tk
∆t

)
, (5)

where φ
(

t−tk

∆t

)
is a basis function centered on the knot time tk and ∆t is the spacing

between knots. To respect the assumed band limitation of the system mentioned
above, we choose ∆t = 0.25f−1

R . The corresponding Nyquist frequency is 2fR, high
enough to accommodate signals with the assumed 50% attenuation at fR.
The cubic B-spline basis function is defined as:

φ(x) =



1− 3

2 |x|2 + 3
4 |x|3 , |x| ≤ 1

1
4 |2− x|3 , 1 < |x| < 2
0 , |x| ≥ 2 .

(6)

Figure 3 shows the spline curve with the knot positions, the tk in Eq. (5), for
a linear alpha dependence over three Rossi cycles. There are 15 knots in all; 13 lie
within the data interval (0 ≤ t ≤ 3). Two additional spline knots are present but
not shown, one beyond either end of the interval covered by the data. These are
included to provide the same functional dependence at the ends of the interval as
elsewhere. This approach differs from the usual assumption in spline theory that
either the first or second derivative of the function is zero at the end of the interval
[5].

3.3. BAYESIAN INFERENCE

Our goal is to make inferences about the spline model for alpha from the xi, yi

data points. In the Bayesian approach, the uncertainty in the value of a model
parameter is represented by a probability density function (pdf). Bayes law gives
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Figure 3. The model used to interpret the Rossi data. We represent alpha as a function of time
in terms of a spline expansion. The spline knot positions are shown as dots.

the pdf for the vector of model parameters a, predicated on measurements d:

p(a|d, I) = p(d|a, I) p(a, I)
p(d|I) , (7)

where p(d|a, I) is the likelihood and p(a, I) is the prior on the parameters. The
symbol I represents all background information about the situation at hand, in-
cluding information about the experiment, the apparatus, and so forth. It is meant
to remind us that analysis should not be done in a vacuum; prior knowledge always
plays a role. From here on, we will drop I from the probability expressions. The
quantity p(a|d, I) is called the posterior and summarizes our knowledge about the
parameters after we combine the measurements with what we knew beforehand.
The denominator in (7) is called the evidence. It can be thought of as the

probability of the data (given the model)

p(d) =
∫

p(d|a) p(a) da . (8)

This denominator ensures the proper normalization of posterior,
∫

p(a|d) da = 1.
Because it does not depend on the parameters, it can be ignored when one is
concerned only with the parameters a. However, as we shall see later, the evidence
becomes the focus of attention when we are concerned about hyperparameters or
selecting the best model to describe the data [6].

3.4. SMOOTHNESS PRIOR

We know that the alpha curve must possess a certain degree of smoothness because
y(t) is band limited. While the spline representation is supposed to provide smooth
curves, it tends to produce oscillations in some applications [7]. To promote the
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smoothness of a function, one often chooses [5,8] to minimize the integral over the
interval T of the square of the second derivative of the function:

S(α) = T 3

∫
T

(
d2α

dt2

)2

dt . (9)

The T 3 factor makes S depend only on the shape of α(t) and independent of T .
The units of S are those of α2 or [t−2]. Using the expansion for α(t), Eq. (5), this
functional can be expressed in terms of the coefficients a. Oscillations in the splines
can be controlled through the prior in Bayes law, Eq. (7). The minus-log-prior on
a is taken to be λS(a), where λ determines the strength of this prior. To make
this quantity dimensionless, λ must have units of [t2]. The parameter λ is called a
hyperparameter because it directly affects a pdf, instead of the model describing
the signal.
An alternative approach to controlling spline oscillations [7] is to allow the

number and positions of the knots to vary, both of which are chosen by maxi-
mizing the evidence using a process similar to that described in Sect. 5.2. That
approach involves much more difficult calculations but has the advantage that the
smoothness is variable and adapts to the requirements of the data.

3.5. SYSTEMATIC EFFECTS

In describing the measurements in Sect. 2, we did not mention several important
aspects of the measurement process. For example, it is essential to determine the
location of the baseline for the amplitude measurements, yB , since all values of the
y position of the data points are relative to this baseline. If yB is measured in a
manner similar to that for the data points, we expect the uncertainty in yB to be
comparable to that in the y position of the data points. To include this uncertainty
in our analysis, we add to the minus-log-likelihood for the data points, Eq. (4),

1
2

[
(yB − y∗

B)
2

σ2
yB

]
, (10)

where yB is the measured value of the baseline and y∗
B is the value in our model.

The standard deviation in measuring the baseline, σyB
, is assumed to be 0.02.

To take yB into account in our model, y in Eq. (2) has to be replaced by y−y∗
B .

This baseline represents a systematic uncertainty because its value impacts many
other model parameters.
Another systematic effect is the amplitude of the Rossi sweep, xR, in Eq. (1).

This is a parameter in the model that we are using to predict the x, y data. It is
not directly measured in our scenario. Since the minus-log-likelihood is a sum over
contributions from measurements, there is no term in the minus-log-likelihood for
xR, as there is for yB above. However, since xR is a parameter in our model, which
influences predictions for the Rossi curve, it can be inferred in our analysis.
There are several more aspects of the experiment that might contribute sig-

nificant systematic effects, e.g., y0, t0, fR, and geometrical distortions in the x, y
measurements. We ignore them to simplify the present analysis.
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3.6. THE FULL POSTERIOR

To summarize, the full minus-log-posterior for our analysis is

− log[p(a|d)] = 1
2
χ2 + 1

2

[
(yB − y∗

B)
2

σ2
yB

]
+ λS(a) , (11)

where 1
2χ2 is given by Eq. (4) and S(a) by Eq. (9). The first two terms represent

likelihood contributions and the last term comes from the prior on smoothness.
There are a total of 17 variable parameters in our model about which we may
draw inferences on the basis of Eq. (11), namely the 15 coefficients in the spline
expansion (5), xR, and yB .

4. Markov Chain Monte Carlo

The Markov Chain Monte Carlo (MCMC) technique provides a means to generate
a random sequence of model realizations that sample the posterior probability
distribution of a Bayesian analysis. The sequence may be used to make inferences
about the model uncertainties that derive from measurement uncertainties. The
usefulness of MCMC in Bayesian inference is well established [9–11].
The simplest MCMC approach is to use the Metropolis algorithm [12] to con-

struct the sequence. In the Metropolis algorithm, one tries to move from the current
position in parameter space by randomly selecting a trial step from a symmetric
probability distribution. The trial step is either accepted or rejected on the basis
of the probability at the new position relative to the previous one. This algorithm
is widely employed because of its simplicity. We use the Metropolis algorithm and
omit the details for lack of space. Many issues need to be paid attention, including
choice of the trial pdf, assurance of convergence of the sequence to the posterior,
and burn in. By using a suitable trial function, we achieve an estimated efficiency
for the MCMC sampling of 0.17% for our example (at λ = 0.4).

5. Results

We demonstrate our analysis technique using the simulated data shown in Fig. 1b.
The 61 data points are based on an alpha curve that rises linearly from 0.4 to
0.7 at the times of 0 and 3 (Rossi cycles), respectively. The x, y values of each
data point are generated by adding random perturbations drawn from Gaussian
distributions with σx = 0.02 and σy = 0.01.

5.1. POSTERIOR SAMPLING USING MCMC

Figure 4 shows five samples drawn from the posterior, Eq. (11), for our model
for λ = 0.04, somewhat lower than its optimal value. Because successive samples
in an MCMC sequence are highly correlated, these five samples are separated by
2000 steps to minimize correlations between them. This kind of display of model
realizations is a good way to visualize the characteristics of an inferred model [13]
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(a) (b)
Figure 4. Five widely separated samples from an MCMC sequence, shown in both (a) the data
domain and (b) the alpha domain. The hyperparameter λ is 0.04 for this case. Viewing these
samples provides one with an understanding of the type of curves that are admissible within the
framework of the model used to interpret the data.

as well as its uncertainties. By showing a representative set of plausible solutions
consistent with the data, the degree of variability of this presentation provides the
viewer with a visual impression of the degree of uncertainty in the inferred model.
Of course, MCMC is more than a tool for visualizing uncertainties; it provides

samples from the posterior from which quantitative estimates of the uncertainty
in the inferred models may be derived. The uncertainty in any aspect of the model
may be estimated with respect to any type of uncertainty measure desired, for ex-
ample, in terms of variance or confidence interval. A notable advantage of MCMC
is that the results are obtained with marginalization with respect to any nuisance
parameters. In our problem, we are not interested in the two systematic parame-
ters, yB and xR. The uncertainties in these parameters are integrated out by the
MCMC process. An MCMC sequence can also be used to estimate the posterior
mean (as an alternative to the posterior mode).
To average over our MCMC sequence, we lay the curves down on a pixelated

image that spans the region of interest. Each curve adds a value to the pixels it
covers. At the end of the process, the value of each pixel in the image is proportional
to the number of curves that fell on top of it. Figure 5 shows two such images.
Figure 5a is obtained with a minimal prior. It demonstrates the tendency of splines
to oscillate. The peaks and valleys of the envelope occur at the spline knots where
the uncertainties are largest. Figure 5b is for λ = 0.4, which is approximately
the value favored by maximizing the evidence in Bayes law, Eq. (7), as discussed
next. The severe oscillations seen in Fig. 5a are well controlled by the stronger
smoothness prior in Fig. 5b. The remaining wiggles in Fig. 5b are caused by random
errors in the particular x, y data set that we are analyzing. The choice of the
hyperparameter λ is clearly very important to making the correct inferences.
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(a) (b)
Figure 5. The posterior distributions for the alpha curves for two values of the hyperparameter
that controls the strength of the smoothness prior: (a) λ = 0.0004 and (b) λ = 0.4. The true
alpha curve is shown as a straight line. These images have the same axes as Fig. 4b.

5.2. ESTIMATION OF HYPERPARAMETER λ

In the Bayesian approach to determining hyperparameters [6], the pdf for λ can
be obtained by integrating the joint distribution for λ and a over a:

p(λ|d) =
∫

p(a, λ|d)da ∝
∫

p(d|a, λ) p(a, λ) = p(λ)
∫

p(d|a, λ) p(a)da , (12)

where we have assumed that the prior on λ is independent of that on a. For a
fairly flat prior on λ, the dependence of this expression on λ is dominated by
the integral on the right-hand side of the equation, in other words, the evidence
defined in Eq. (8). Within a scaling factor, the integral can be approximated as the
peak value of the product p(d|a, λ) p(a) times its volume in the 17-dimensional
parameter space. The volume is proportional to the determinant of the covariance
matrix, which we estimate using the MCMC technique by the second moments,
〈(ai − āi)(aj − āj)〉, where the brackets indicate an average over the posterior and
āi is the posterior mean value of the ith parameter ai, that is, āi = 〈ai〉.
For this approach to work, it is necessary for the α(t) curve to possess some

structure that doesn’t minimize the prior. The peak in the evidence comes about
when a stronger prior draws the solution away from the actual signal and thus
causes the minus-log-likelihood to increase. For the linear α(t) signal shown in
Fig. 3, the evidence shows no peak because the linear signal that minimizes the
smoothness prior also comes close to minimizing χ2. Thus, for this auxiliary cal-
culation, we use a band-limited step function for α(t), which steps from 0.4 to 0.7
at t = 1.5. As shown in Fig. 6, the evidence exhibits a maximum around λ = 0.4,
indicating that this is the preferred value.
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Figure 6. Plot of the normalized evidence versus the hyperparameter λ for a steplike alpha
curve.

(a) (b)
Figure 7. (a) A vertical slice through Fig. 5b (λ = 0.4) at the t = 1.5, which estimates the
posterior distribution for alpha at that time. (b) Analysis of Fig. 5b yields the posterior mean
estimate for α(t) and its one-standard deviation uncertainty band.

5.3. INFERENCES ABOUT THE ALPHA CURVE

As argued above, each column of Fig. 5b represents the posterior distribution for
alpha at a given time, as shown in Fig. 7a. The mean value of alpha for this
distribution is 0.53. Its rms deviation of 0.013 or 2.4% is approximately consistent
with the assumed σy = 0.01 and σyB

= 0.02, which are, respectively, 0.9% and
1.8% of the amplitude y = 1.15 at that time. By analyzing each column of Fig. 5b,
one can determine the mean of the posterior in alpha and its rms deviation as a
function of time. Figure 7b shows the posterior mean and the mean plus and minus
one standard deviation. These latter curves represent an uncertainty envelope for
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the alpha curves.
One should be aware that the uncertainty envelope in Fig. 7b only refers to the

pdf at any particular time, without regard to any other time. Details contained in
the posterior distribution have been marginalized out. Specifically, the correlations
in uncertainties from one time to another can not be inferred from this envelope.
To get an idea of these correlations, one has to go back to the MCMC samples
to visualize the correlations, as in Fig. 4. One can quantify the correlations. For
example, the correlation between the uncertainties at two different times can be
estimated by computing the cross correlation for the MCMC sequence.
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