

PP004
Parallel Port-Based

DSPT 6001 / 6002 CAMAC CONTROLLER
REFERENCE MANUAL

Revised 03/18/07

Computer Methods
4424 Technology Drive

Fremont, CA 94538
510 824 0252

www.computer-methods.com

 2

TABLE OF CONTENTS

Introduction ... 3
Hardware Setup... 3
PP004 Parallel Port Commands ... 5
PP004 Diagnostic Program “EPPDIAG.EXE”.. 6
Accessing the I/O Port in Win98, WinNT, Win2000 and WinXP................... 8
PSP9100 Driver Set Compatibility.. 8
PPCAM32.DLL AND CAMTEST .. 9
PPCAM32.INI (PPCAM32.DLL CONFIGURATION) 10
ACAP COMPATIBILITY (CMPP004 Kernel Mode Driver) 11
References... 13

 3

Introduction

Figure 1: PP004 Interface and Cables

The PP004 interfaces an IBM-compatible PC with a DSPT 6001 / 6002 CAMAC Controller via
the PC Parallel Port. This product is designed to replace the functionality of the PC-004 CAMAC
interface, which required a 16-bit ISA slot. As newer and faster computers become available, it is
increasing difficult to find PCI-based motherboards that support an ISA slot.

The PP004 communicates with the PC through a standard parallel (printer) port operating in EPP
mode. Most PCI-based motherboards support EPP mode (enabled via the BIOS). Thus, it is
now feasible to upgrade older ISA-based PCs to newer and higher-performance models and
continue to utilize existing CAMAC devices. The non-invasive aspect of this interface makes it
ideal for use with laptops in the field.

Hardware Setup

The PP004 is shipped with the following items:

Ø PP004 Interface
Ø IEEE1284 Extension Cable 1.8M (DB25 to DB25)
Ø USB A-B Cable 2M
Ø CD with Drivers and Diagnostics

Before using the PP004, you must decide how to supply power. The PP004 accepts 5 to 15 volts
@ 150ma maximum current. There are two options for power:

1. Via USB Connector
2. Via 2.1mm Power Connector

 4

Figure 2: Location of Power Select Jumper JU1

Figure 2 illustrates the location of the blue jumper JU1. When shorting pins 1 & 2, the USB
connector is selected for power input. When shorting pins 2 & 3, the power jack is selected for
input. The power jack can be used with any DC source between 5 and 15 volts such as a 9v
500ma power-adapter (Digikey Part Number T405-ND).

The green LED on the PP004 front panel indicates that power is connected to the board. The
LED will flash orange when a DATASTROBE signal is issued (pin 14 of the parallel port
connector). The orange indicator is a useful debugging tool for verifying that communication is
established between the PC parallel port and the PP004.

Figure 3: Ribbon cable connectors for two controllers

The PP004 is capable of interfacing with two 6001 / 6002 CAMAC controllers. Figure 3 illustrates
the location of connectors PL1 and PL2. A controller connected (via the 40-pin ribbon cable) at
PL1 will be addressed as Crate 1. Similarly, a controller connected at PL2 will be addressed as
Crate 2. Controllers are selected using software commands written to the parallel port’s EPP
Address register (see PP004 Parallel Port Commands).

 5

The PP004 interfaces with the PC bus via the parallel (printer) port using the DB25 extension
cable. The parallel port must be configured in EPP mode. This is usually one of the available
options for printer settings in the BIOS. Other modes (AT, PS2, SPP, ECP) are not supported.
EPP mode is considered to be very reliable and offers ample bandwidth for CAMAC data transfer
rates.

PP004 Parallel Port Commands

The I/O registers for a PC parallel port operating in EPP mode are as follows:

Register I/O Port Offset
SPP Mode Data 0

SPP Mode Status 1
SPP Mode Control 2

EPP Address 3
EPP Data 4

Table 1: Port Offsets for EPP Mode Registers

Communication with the PP004 is handled through EPP Address and Data operations. Many
parallel ports require that the SPP Control register be configured with a 0x4 hex to enable EPP
transfers. This corresponds to setting control bits C0, C1 and C3 (active low signals). This is
recommended as a one-time initialization step before reading or writing to EPP registers.

Data is written to the crate controller by setting the internal address of the desired CAMAC
register using an EPP Address Write (bits D3-D0), followed by an EPP Data Write. Similarly,
data is read from the crate by first setting the desired internal address with an EPP Address Write
followed by an EPP Data Read. The high order bits (D7-D5) of an EPP Address Write select the
desired controller. Table 2 summarizes PP004 commands.

PP004 Operation EPP
Register

R/W

Point To CAMAC Crate Controller and Internal Address.
Bits D3-D0 select address.

Bits D7-D5 select crate (0=Crate1, 1=Crate2).
(D4 is unused)

Address Write

Read Crate LAM Signals Address Read
Write Data at CAMAC Internal Address* Data Write
Read Data at CAMAC Internal Address* Data Read

*EPP Data transfer auto-increments pointer to next CAMAC Internal Address.
Table 2: PP004 Commands

EPP Data operations increment the pointer to the next CAMAC Internal Address. This reduces
the overhead of reading or writing data to successive CAMAC registers. The following table
presents a sequence of PP004 operations used to read the module ID (F3 A0 command) from a
CAMAC device assuming the following conditions:

 6

1. PP004 Connected to LPT1 (I/O Port Base Address 0x378)
2. CAMAC 6001 / 6002 Controller ribbon cable connected to PL1
3. CAMAC Module is located at Station 1

Desired Operation I/O Port Address Data R/W

Initialize SPP Control Register for EPP
Transfers

0x37A 0x4 Write

Set pointer to Internal CAMAC A Register 0x37B 0x3 Write
Write 0 to A Register 0x37C 0x0 Write
Write 3 to F Register 0x37C 0x3 Write
Write 1 to N Register 0x37C 0x1 Write

Set pointer to CAMAC Cycle Register 0x37B 0x7 Write
Initiate CAMAC Cycle 0x37C 0x0 Write

Read QX and Encoded LAM Register 0x37C QX and LAM Read
Read CAMAC data high byte 0x37C RH Read

Read CAMAC data middle byte 0x37C RM Read
Read CAMAC data low byte 0x37C RL Read

All values in hexidecimal unless otherwise noted
Table 3: Sample CAMAC Command F3 A0 (Read Module ID)

PP004 Diagnostic Program “EPPDIAG.EXE”

The 32-bit application EPPDIAG provides low-level access to parallel port I/O registers. A setup
file for installing EPPDIAG can be found on the PP004 Applications CD distributed with the
product. In addition, the VC++ project used to build EPPDIAG is also distributed on the
application CD. EPPDIAG can be used to check a system for EPP compatibility and verify proper
operation of the PP004. Figure 4 illustrates the front panel of this diagnostic program.

The Initialize Control Register button performs the operation of writing 0x4 to the SPP Control
register. This is highly recommended before attempting any EPP operations. The Test for EPP
Mode button performs a series of operations that detect the presence of EPP Mode support. If
this test is not successful than the port is not operating in EPP mode. Check the BIOS or driver
settings for the parallel port. Most PCI-based systems support all of the parallel port modes.
Some systems support only SPP and ECP modes. ECP is not the same as EPP and is not
supported by the PP004.

Assuming that EPP mode operation is possible, the operator first selects a port register to be
accessed. Figure 5 illustrates the registers that are available in EPP mode (SPP Data and SPP
Status are generally not used for EPP transfers).

If doing a write operation, the hexadecimal value is typed into the value box and the Write button
is clicked. If doing a read operation, the Read button is clicked and the result is returned in the
Value box. The Loop buttons continuously repeat an operation until the Stop button is clicked.
Looping is generally used as a debugging tool with an oscilloscope to trace signals on the PP004
board.

 7

Figure 4: Front Panel of EPP Mode Diagnostic

Figure 5: Port Register Selection

This diagnostic could be used to enter the F3 A0 CAMAC Command sequence described table 3
and retrieve the module ID. This is a very good method of verifying the proper connections and
operation of the PP004. The step-by-step instructions for executing this sequence are as follows:

Desired Operation Port Register Value Button
Initialize SPP Control Register for EPP

Transfers
SPP Control 0x4 Write

Set pointer to Internal CAMAC A Register EPP Address 0x3 Write
Write 0 to A Register EPP Data 0x0 Write
Write 3 to F Register EPP Data 0x3 Write
Write 1 to N Register EPP Data 0x1 Write

Set pointer to CAMAC Cycle Register EPP Address 0x7 Write
Initiate CAMAC Cycle EPP Data 0x0 Write

Read QX and Encoded LAM Register EPP Data QX and LAM Read
Read Module ID EPP Data Hi Byte Read
Read Module ID EPP Data Middle Byte Read
Read Module ID EPP Data Low Byte Read

All values in hexadecimal unless otherwise noted
Table 4: F3 A0 (Read Module ID) Command Sequence Using EPPDIAG Application

The CAMAC Operation command group conveniently performs the sequence described in table
4. After selecting the desired CAMAC station, clicking the F[3] A[0] button will set up the
command, issue a CAMAC cycle and read back a 16 bit value (formed by reading and combining

 8

the CAMAC RM and RL bytes). The result is displayed (in decimal) as the Device ID. The front
panel LED will flash orange to indicate a data transfer.

Accessing the I/O Port in Win98, WinNT, Win2000 and WinXP

In DOS and Windows 98, applications are allowed to execute “_outp” and “_inp” instructions that
directly access the PC’s I/O port. However, on WinNT, Win2000 and WinXP platforms, these
instructions are considered “privileged” and must run under ring 0 in protected mode.

The WinIo library allows 32-bit Windows applications to directly access I/O ports and physical
memory. It bypasses Windows protection mechanisms by using a combination of a kernel-mode
device driver and several low-level programming techniques.

The WinIO DLL and driver set is included with the EPPDIAG project on the PP004 Applications
CD.

PSP9100 Driver Set Compatibility

Drivers to support PSP9100 are located on the application CD in the folder PSP9100_PP004.
The common elements of PSP9100 drivers are encapsulated in the file CAM6001.ASM. By
setting the appropriate compiler directives, this component generates an object module (OBJ)
that supports a variety of language platforms. The file CAM6001.ASM has been modified to
support the PP004 interface. Descriptions of the key files provided on the application CD are:

FILENAME DESCRIPTION
CAM6001.ASM Assembly language driver exposing a set of functions

to read and write to the 6001 / 6002 Controller
CAMTURBO.OBJ Object module compiled for Turbo Pascal 4
CAMTUNIT.OBJ Object module compiled for Turbo Pascal Unit

encapsulating CAM6001 functions
CAMBASIC.OBJ Object module compiled for Basic
CAMACPRO.OBJ Object module compiled for Professional Fortran
CAMACMS.OBJ Object module compiled for Microsoft Pascal and C
CAMAC_C.OBJ Object module compiled for C without Pascal attribute
CAMTUNIT.TPU Turbo Pascal Unit encapsulating CAM6001 functions
MAKE9100.BAT Batch file that compiles object modules for the various

language platforms
NAFTEST.PAS Turbo Pascal program source for sending and

receiving CAMAC commands to/from 6001 / 6002
controller

NAFTEST.EXE NAFTEST executable compiled for PP004
Table 5: PSP9100 Driver Files

It should be noted that the PP004 does not support DMA transfers analogous to the PC004.
Instead, the DMAI and DMAO functions in CAM6001.ASM are modified to issue repeated calls to
CAMI and CAMO respectively. Data rates in the vicinity of 225K bytes per second have been
achieved with the PP004 implementation of this driver.

When specifying a transfer length of three bytes in the DMASET function, the PP004 reads/writes
the three CAMAC data bytes to a DWORD location. This implies that data is read (or stored) in
the PC on DWORD (32 bit) boundaries. This adheres to the same convention implemented by
the Jorway SCSI controller drivers. To move 24- bit wide CAMAC data on boundaries other than
32-bit, simply modify the addressing in the DMAI and DMAO functions in the CAM6001.ASM
driver as needed and recompile the object module using the appropriate compiler directive
applicable to the platform in use.

 9

The object modules supplied on the application CD were compiled using Microsoft MASM
Version 6.0 and Linker 5.13. The NAFTEST utility was compiled using Borland Turbo Pascal 5.0.
Development was performed on a Win98 platform using a DOS Shell.

PPCAM32.DLL AND CAMTEST

The PPCAM32 folder contains a Visual C++ 5.0 DLL project for PPCAM32.DLL. This DLL
contains a set of C functions that communicate with a CAMAC crate controller via the PP004
connected to the parallel port. The CAMTEST folder contains a simple dialog-based MFC
application that uses the DLL to send simple commands and retrieve data to/from a CAMAC
crate. These projects are provided as samples of tested code to communicate successfully with
a CAMAC crate over a range of Windows platforms.

The following table documents the functions exported in PPCAM32.DLL. The DLL and
corresponding header and library files are available in the “CAMTEST” project folder.

PPCAM32.DLL Function Declarations
Function Description
void Crate_set(int *p_C);
 p_C = pointer to Crate Number

Selects a CAMAC Crate.
Subsequent calls to cami and
camo are directed to this crate.

Void cami (int *p_N,int *p_F,int *p_A, int
*p_DRW,int *p_Q,int *p_X);
 p_N = pointer to station
 p_F = pointer to function
 p_A = pointer to address
 p_DRW = pointer to data
 p_Q = pointer to Q flag
 p_Q = pointer to X flag

Reads a 16-bit value from the
CAMAC crate. The state of the
“Q” and “X” flags are returned.

Void camo (int *p_N,int *p_F,int *p_A, int
*p_DRW,int *p_Q,int *p_X);
 p_N = pointer to station
 p_F = pointer to function
 p_A = pointer to address
 p_DRW = pointer to data
 p_Q = pointer to Q flag
 p_Q = pointer to X flag

Writes a 16-bit value to the
CAMAC crate. The state of the
“Q” and “X” flags are returned.

cami24(int *p_N,int *p_F,int *p_A,unsigned long
*p_DRW,int *p_Q,int *p_X);
 (see cami)

24-bit version of cami. Reads a
24-bit value from the CAMAC
crate.

camo24(int *p_N,int *p_F,int *p_A,unsigned long
*p_DRW,int *p_Q,int *p_X);
 (see camo)

24-bit version of camo. Writes a
24-bit value to the CAMAC crate.

unsigned int caml(); Returns the LAM of the highest
priority station (or 0 for no LAM).

camcl(unsigned int *ZCI_bits);
 ZCI = pointer to ZCI bit configuration
 Bit 1 - Z CYCLE
 Bit 2 - C CYCLE
 Bit 3 - SET I,CAMAC INHIBIT
 Bit 4 - SET BUS INHIBIT REG
 Bit 5 - RESET BUS INHIBIT REG
 Bit 6 - RESET ACL DETECT REG
 Bit 7 - RESET 6002,ACL & BUS INHIBIT REG

Writes the CAMAC control
register with the desired bit
configuration

dmaset(int *p_C, int *NOB, int *QBL,unsigned int
*NTR);
 p_C = pointer to Crate Number
 NOB = pointer to Number of Bytes per transfer

Initializes the DLL for a “dma”
transfer. The PP004 emulates
DMA transfer by performing
repeated calls to cami (or camo)

 10

 QBL = (not used)
 NTR = Number of transfers

that are optimized for speed.

int dmai(int *p_N,int *p_F,int *p_A,unsigned char
*p_DRW,int *p_E);
 p_N = pointer to station
 p_F = pointer to function
 p_A = pointer to address
 p_DRW = pointer to data
 p_E = (not used)

Performs a “dma” transfer from
the device to the data buffer
based on the parameters passed
in dmaset.

int dmao(int *p_N,int *p_F,int *p_A,unsigned char
*p_DRW,int *p_E);
 p_N = pointer to station
 p_F = pointer to function
 p_A = pointer to address
 p_DRW = pointer to data
 p_E = (not used)

Performs a “dma” transfer from
the data buffer to the device
based on the parameters passed
in dmaset.

unsigned int camcyc(unsigned int *NTR);
 NTR = (not used)

Returns the number of transfers
completed in the last dmai or
dmao call.

Table 6: Descriptions of Functions Exported in PPCAM32.DLL

Figure 6 illustrates the dialog presented by the CAMTEST application. The operation of this
dialog is self-explanatory and should be familiar to users with CAMAC experience. The dialog
allows the operator to select a crate, station, function and address. Clicking the EXECUTE button
will issue a CAMI or CAMO call (depending on the function selected). Radio buttons reflect the
status of the Q and X flags. DMAI calls can be tested by entering the number of transfers,
selecting the byte transfer length and clicking the READ button. The results of the transfer are
logged in the list box.

Figure 6: CAMTEST Application Dialog

PPCAM32.INI (PPCAM32.DLL CONFIGURATION)

PPCAM32.DLL assumes that CAMAC crates 1 & 2 will be cabled to connectors PL1 and
PL2 (respectively) of a PP004 interfaced to the "primary" parallel port at I/O address
0x378. Similarly, crates 3 & 4 are assumed to be connected to a PP004 at the
"secondary" parallel port at I/O address 0x278.

The primary and secondary parallel port assignments can be altered by editing the

 11

file PPCAM32.INI and modifying the port address specifications. This file will be located in the
same folder as PPCAM32.DLL.

Suppose the parallel port of the target system does not support EPP mode. If a second (EPP-
compatible parallel port) is installed, it will be assigned an I/O port address by the Windows Plug
and Play driver (assume this new address is 0x278). To configure the DLL for this I/O address,
the primary port for the PP004 must be set to 0x278 in the PPCAM32.INI file. Changes to the INI
file configuration will take effect the next time the DLL is loaded.

On fast motherboards, there may be timing issues when initiating a CAMAC cycle. The DLL must
wait at least 1 usec for a CAMAC cycle to be completed. The INI parameter Delay Cycles
specifies a delay period (in machine cycles) after a CAMAC cycle is initiated to allow the cycle to
complete. This period may be increased as needed on faster machines.

ACAP COMPATIBILITY (CMPP004 Kernel Mode Driver)

The PP004 supports operation with ACAP – an application for engine combustion analysis.
ACAP is a 16-bit Windows application that communicates with the CAMAC 6001 (or 6002)
controller using an ISA-based PC004 interface card. Most contemporary mother boards no
longer support the ISA bus making it difficult to migrate the ACAP application to newer computers
running Windows 2000 or XP.

The CMPP004_SETUP.EXE file (distributed on the PP004 Applications CD) installs a special set
of drivers and DLLs that interface the PP004 with the ACAP application. At present, the only
version of ACAP tested with the PP004 interface is 6.0B. However, previous versions of ACAP
are expected to be compatible with the PP004.

It is required that the ACAP application already be installed on the target system before running
the CMPP004_SETUP.EXE setup file. During the setup process, the user will specify the
location of the ACAP program folder. The setup file will then perform the following actions:

1. Copy the existing WINCAMAC.DLL and WINCAM32.DLL files in the ACAP program
folder to a subfolder named “DLL”

2. Overwrite the WINCAMAC.DLL and WINCAM32.DLL files in the ACAP program folder
with versions that support the PP004

3. Install the CAMTEST.EXE utility in the ACAP program folder.
4. Install the CMPP004.SYS driver in the Windows System folder
5. Update the Windows registry with configuration information for the CMPP004.SYS driver
6. Prompt the user to reboot

It is assumed that the PP004 is connected to the primary printer port (LPT1) located at port
address 0x378. If this is not the case, it will be necessary to modify the registry to point to the
correct port address. To determine the port address of the printer port, use the Device Manager
as follows:

1. Right-click on My Computer and select Properties
2. Select the Hardware tab
3. Click the Device Manager button
4. Expand the Ports section (see figure 7)
5. Right-click on the printer port being used for the PP004 and select Properties
6. Select the Resources tab (see figure 8)

 12

Figure 7: Locating the Printer Port in Device Manager

Figure 8: Displaying the Port’s Resources

In the example of figure 8, the port address for the LPT1 printer port is 0378 (hex). To edit the
appropriate registry key, follow these steps:

1. Click Start, Run
2. Type the program name “REGEDIT” and click OK
3. Navigate to the following key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\cmpp004\Parameters (see figure 9)

 13

4. Right-click on IoPortAddress and select Modify
5. Enter the hexadecimal value of the port address obtained from Device Manager and click

OK
6. Reboot the system.

Figure 9: Editing the IoPortAddress registry key

References

Parallel Port Complete: Programming, Interfacing & Using the PC’s Parallel Printer Port
Copyright 2000 Axelson, Jan, Lakeview Research, 5310 Chinook Ln., Madison, WI USA
608 241 5824 mailto:info@lvr.com, URL:http://www.lvr.com.

DSP Technology Inc. Technical Reference Manual: Model 6001 / 6002 CAMAC Crate
Controller. Copyright 1990 DSP Technology, Inc. Fremont, CA 94538

WinIo v2.0: Direct Hardware Access Under Windows 9x/NT/2000/XP Copyright 1998-
2002 Yariv Kaplan http://www.internals.com

