
NASA Technical Memorandum 103849

/

Using a Graphical Programming
Language to Write CAMAC/GPIB
Instrument Drivers

Horacio Zambrana and William Johanson

I_.;T ,IIi',!_ ,,T _; !V':_,,:,> ("4ASA) i I _, CSLL

,'_"; L- _ _' ,_i4 7

May 1991

National Aeronautics and
Space Administration

NASA Technical Memorandum 103849

Using a Graphical Programming
Language to Write CAMAC/GPIB
Instrument Drivers
Horacio Zambrana, Eloret Institute, Sunnyvale, California
William Johanson, Ames Research Center, Moffett Field, California

May 1991

NationalAeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035-1000

Using a Graphical Programming Language to Write

CAMAC/GPIB Instrument Drivers

HORACIO ZAMBRANA* AND WILLIAM JOHANSON

Ames Research Center

Summary

To reduce the complexities of conventional pro-
gramming, we have used graphical software in the

development of instrumentation drivers. The graphical

software provides a standard set of tools (graphical

subroutines) which are sufficient to program the most

sophisticated CAMAC/GPIB drivers. We made use of

these tools and successfully developed instrumentation

drivers for operating CAMAC/GPIB hardware from

two different manufacturers: LeCroy and DSP. Our paper

will present the use of these tools for programming a
LeCroy A/D Waveform Analyzer.

Introduction

A graphical programming approach has been selected

at the Ames Research Center Hypersonic Free Flight

Facility to develop instrumentation drivers. These

drivers control and process experimental data acquired

by CAMAC (Computer Automated Measurement and

Control) and GPIB (General Purpose Interface Bus)
instrumentation.

Our basic data acquisition system consists of a Macintosh

II computer, an NB-GPIB board, several CAMAC A/D
Waveform Analyzers (digitizers), a CAMAC to GPIB
interface module, and a CAMAC crate which houses both

the digitizers and the interface (see fig. 1). The software

package used, LabVIEW, provides programming tools for

data acquisition, control, and data processing as well as
the flexibility to model almost any application. The

flow of control and data in LabVIEW is implemented in

a graphical programming language, G. The graphical
programming approach makes instrumentation pro-

gramming an easy task for the programmer. Our paper

describes the development of a CAMAC/GPIB driver for

an A/D Waveform Analyzer (digitizer) using the

software's library of GPIB subroutines.

Horacio A. Zambrana was supported by a grant from

NASA to Eloret Institute (NCC2-487).

*Eloret Institute, Sunnyvale, CA 94087.

@
Test Section

IiIl[Crate I ll
Illi • liiiiiiiiiii:Ciii i itlI

T° -gSIL ar

Figure 1. Data acquisition setup.

J

Background on CAMAC and GPIB

Understanding how data flows in a CAMAC/GPIB

environment is essential to the development of the digi-

tizer driver. In general terms, data commands will flow

from the computer to the GPIB interface, and from the

interface to the CAMAC digitizer. Digitized data flows

from the digitizer to the interface, and from the interface

to the computer. The digitizer accepts only CAMAC

commands. The interface accepts both CAMAC (which

are passed along to the digitizer) and GPIB commands.

Three of the most relevant CAMAC commands are FO,

A(), and N0. The N0 command specifies the crate sta-

tion number of the digitizer that is being addressed. The

A0 command specifies a subaddress within the digitizer

(suchaschannelselection),andF0isafunctiontobe
performedatthespecifiedsubaddressinthe selected digi-
tizer. The most commonly used GPIB commands are

MLA (My Listen Address) and MTA (My Talk
Address). MLA commands the interface to enter Listen

mode so that it may accept CAMAC or setup commands

from the computer. MTA commands the interface to

enter Talk mode so that it may pass data from the digi-

tizer to the computer.

Background on Software

Application programs (such as instrumentation drivers)

created by using the graphical software are called virtual

instruments (VIs). VIs have three main parts: the front

panel, the block diagram, and the icon.

The front panel specifies the inputs and outputs and

provides the user interface for interactive operation. The

block diagram is a VI's source code, which is created by

using the G language.

Figure 2 shows an example of a front panel. This

particular example obtains the square of a number. The
user scrolls the scale selector to choose a number. The

box on the right shows the square of the selected number.

Figure 3, the block diagram, shows where the program-

ming takes place. The scale selector is represented by the

darkened border terminal, EXT. The output is represented

by the undarkened border terminal, EXT. EXT stands for

extended precision floating point decimal (fig. 4 shows

other block diagram terminal types).

r" "_

d,

2

0--

JValueof "X'2"[

Figure 2. Front paneL

flIzlput "X'I ' • -

Figure 3. Block diagram.

ip.

I_ Signed 16 bit integer

Signed 32 bit integer

String

Boolean
t_

Figure 4. Block diagram terminals.

Darkened terminals indicate an input from the front

panel. In the same manner, undarkened terminals repre-

sent outputs. One of many operators available for pro-
gramming is the multiplication operator. This is repre-

sented by the triangular box with the multiplication

sign. The source code is generated by wiring the input to

the multiplication operator, and wiring the result to the

output. The style of the wire is set by the data type of the
source terminal to which it is attached (see fig. 5).

Number

1 D Array

Boolean

String

Cluster

Figure 5. Wire styles.

The icon is a representation of the VI (see fig. 6). The icon

represents the VI in a manner analogous to a subroutine
call statement when the VI is used as a subVI in another

VI's block diagram (ref, 1)

Figure 6. Icon example.

There are various graphical structures which perform the

conventional if then, do, while do loops, etc. We will

briefly discuss the three types used in our discussion. The

first type is the Sequence structure shown in figure 7.
The Sequence structure consists of one or more frames

that execute sequentially.

n

Figure 7. Sequence structure.

The second type is the True/False Case structure shown

in figure 8. Depending upon the boolean input, the opera-
tion in the True or the False frame will be executed.

Figure 8. Case structure.

The third type is the While Loop shown in figure 9. A

While Loop executes its subdiagram repeatedly until a

false boolean value is passed to the conditional terminal.

Cor_i_o

Figure 9. While Loop.

GPIB VIs

Several VIs are supplied with the software to perform
specific GPIB functions. The most relevant GPIB VIs

are: GPIB Write, GPIB Read, GPIB Misc., and GPIB
Serial Poll

The GPIB Write VI is used to send a data string from the

computer to the interface. The two principal inputs to the

GPIB Write are the data string, which is a string of bytes
representing CAMAC and/or GPIB commands, and the

address string of the interface. Both strings are encoded in

binary. The GPIB Write VI icon and the two principal
inputs are shown in figure 10.

[GPIB Address stri_J

Figure 10. GPIB Write VI example.

The GPIB Read VI is used for reading out data from the

digitizer through the interface to the computer. The VI
can also be used to read status data from the interface. To

retrieve the data by using the GPIB Read VI, both the

GPIB address string and the number of data bytes to be

read must be specified. An example using GPIB Read is

shown in figure 11.

IDa_ Bytes
tobe read 1

Figure 11. GPIB Read example.

The GPIB Misc. VI performs the operation indicated by
the GPIB command string. The two most common

applications of this VI are for setting the interface in
talk mode (MTA command) or for setting the interface

in Listen mode (MLA command). A simple example

using GPIB Misc. is shown in figure 12.
I

I

Figure 12. GPIB Misc VI example.

Status bytes are generated by the digitizer and sent to

the interface. These bytes convey information such as
whether the data read is valid or invalid. GPIB Serial Poll

reads the status bytes from the interface to the computer

(see figure 13).

II _d._SS II_ IRes_l

Figure 13. GPIB Serial Poll example.

The Waveform Analyzer V!

The A/D Waveform Analyzer used is a 10-bit transient

digitizer designed in accordance with CAMAC standards

(IEEE Std. 583). It can process signals from four dif-

ferent sources simultaneously. Although most of the

setup commands are selected on the actual digitizer, the
initialization and data readout are CAMAC controlled

through the interface.

To send commands to the digitizer through the interface,

the following steps are required: One, the interface must
be addressed to Listen; two, the desired command

information (F0, A0, N0) must be loaded in; and

three, a CAMAC cycle must be executed to send the
command to the digitizer. A CAMAC cycle is executed

by addressing the interface to Talk (ref. 2). These pro-

cedures must be repeated every time a new command is
sent to the digitizer. We created the SEND FAN VI to

perform these necessary procedures. The SEND FAN VI

inputs are F0, A0, N0 (numerical inputs) and GPIB

Address (string input) of the interface. The front panel

of SEND FAN is shown in figure 14.

CONNECTOR PANE

A

GPIB ADDI_

FRONT PANEL

F

R

H

GPIB RDDR

Figure 14. SEND FAN VI.

The block diagram of SEND FAN is shown in figure 15.

Before F0, A0, and N0 are fed into the sequence

structure, they are grouped into a numeric array and con-

verted into a binary string. The first operation, sequence-
0, executes the GPIB Write VI. This addresses the inter-
face to Listen and loads the command information.

Sequence-1 executes a CAMAC cycle using the My Talk
Address SubVI and the GPIB Misc VI. The use of SEND

FAN VI makes the programming of the Waveform Ana-

lyzer VI an easier task.

The front panel of the Waveform Analyzer VI consists of

three numerical inputs, one boolean input, one string
input, and one graphical output (see figure 16).

The three numerical inputs are: N, the channel of the

digitizer to be read out, and the number of data samples

to be acquired. The boolean input is a switch for selecting

either an internal or an external stop trigger. The string

input specifies the GPIB address of the interface. The
graph is for displaying the digitized data.

4

.i i

:[M I ---L,

DIAGRAM I

Figure 15. SEND FAN VI Diagram.

Channel
A

Ch4_

Ch 3

Ch 2

Ch I

Data Samples
A

64K __

32K

16K

8K
V

Tri99er

Ext _Int

Imill o I_0oo|4oQoJ6oooleoooJ
_1ro

GPIB Addr N

Figure 16. Waveform Analyzer Vl Front Panel.

The digitizer control sequence is shown in Figure 17.

These commands are specified in the block diagram of the

Waveform Analyzer VI (see appendix for the VI block

diagram sequences). Sequence-0 in the VI diagram issues

an F(9) (Initialize digitizer) via the SEND FAN subVI.

Sequence-1 enables the LAM (Look At Me) by issuing an
F(26). LAM is a signal from the module to the interface

indicating that the module requests attention. Sequence-2

selects the trigger type according to the front panel

boolean input. If false, an internal stop trigger, F(25), is
issued. If true, no command is issued. The system will

then expect an external stop trigger to occur at a later

time. When a trigger is received, the digitizing sequence

completes and the digitizer generates a LAM.

I F(9) or Front-Panel Button

I F(26) I

I Stop Trigger or F(25)

I

Test for LAM in I

Iresponse to F(8)

I F<,o>I

I F(16)'A(X)

f
Select GPIB Transfer Mode

V
I

V
I GPIgReadI

Figure 17. Control Sequence.

Sequence-3 verifies that all the data has been acquired by

the digitizer. To do this, Sequence-3 uses a two-step inner
sequence structure placed within a While Loop. The first

inner sequence issues an F(8) (Test for LAM). This

function tells the digitizer to send a status byte to the

interface. The second inner sequence conducts a l-byte
serial poll using GPIB Serial Poll VI to read the status

byte. The status byte is then evaluated to determine if the

LAM has been generated. The result of this evaluation is

wired to the conditional terminal of the While Loop. The

While Loop will continue to cycle until the conditional

response is true; i.e., until LAM is generated by the

digitizer.

Sequence-4 clears the LAM by issuing an F(10). In

sequence-5 the channel to be read is selected by issuing an

F(16) A(X). For example, F(16) A(0) selects channel
one, F(16) A(1) selects channel two, and so forth.

Sequence-6 selects the interface data transfer mode

(ref. 3). To specify a 2-byte block transfer mode, 122 is

convertedfromadecimal integer to a binary string. The

string is sent to the interface via the GPIB Write VI.

Sequence-7 issues an F(2) (Read data). This command puts

the digitizer into the read out mode. In sequence-8, the
GPIB Read VI extracts the specified number of data

bytes from the digitizer through the interface and into

the computer. In the same sequence, the digitized data is

transformed from a binary string array into a numerical

array. Two other operations are necessary to transform

the raw data into voltage. Having completed these steps,

we transfer the data into Sequence-9 where it is wired to

the graphical terminal for display on the front panel.

Summary and Overall Comments

We have just demonstrated how a graphical programming

language is used to write CAMAC/GPIB instrumenta-
tion drivers. The GPIB VIs provided by the software
enable the user to create instrumentation drivers without

having to learn the more complicated details of the

CAMAC and GPIB protocols.

Using these VIs, two DAS systems have been developed

at Ames Research Center for high-speed data acquisition,

control and processing. Each system used different
CAMAC and GPIB instrumentation hardware. Both

systems were developed in a short period of time, by

individuals with no previous DAS experience.

References

1. LabVIEW 2 User Manual. National Instrument

Corporation, Austin, Texas, Jan. 1990, p. 1-3.

2. CAMAC TO GPIB INTERFACE MODEL 8901A

(manual), LeCroy, Chestnut Ridge, New York,

Jan. 1986, p. 2-1.

3. QUAD 10-BIT TRANSIENT DIGITIZER MODEL

8210 (manual), LeCroy, Chestnut Ridge, New

York, June 1987, p. 1-4.

Appendix

Block Diagram for Waveform Analyzer

loP

Sequence O: Initiate Sampfing

Sequence 1: Enable LAM

............ 4 True P'------_ -_-_i

Sequence 2: Select Trigger

! I_ST FORL_ I i

Sequence 3: Test For LAM

ICLEAr_LAMI

Sequence 4: Clear LAM

[:.

Sequence 5: Select Channel

|

_.,, I' 6-]_TT "]"OCK rz_A'x)rz'Qu_s'r[!l

Sequence 6: Specify Data Transfer Mode

Sequence 7: Read Data

..................i""_ _ 8 _ _"''i "

Sequence 8: Convert Data

Sequence 9: Prepare and Graph Data

IXl/ A
Nalor_d Awoneu_cs rand

Admln_don

I.Report No.

NASA TM- 103849

Report Documentation Page

2. Government Accession No. 3. Recipient's Catalog No.

4. Title and Subtitle

Using a Graphical Programming Language to Write CAMAC/
GPIB Instrument Drivers

7. Author(s)

Horacio Zambrana* and William Johanson

9. Performing Organization Name and Address

Ames Research Center

Moffett Field, CA 94035-1000

5. Report Date

May 1991

6. Performing Organization Code

8. Performing Organization Report No.

A-91100

10. Work Unit No.

592-01-1 l

11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Memorandum

14. Sponsoring Agency Code

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Washington, DC 20546-0001

15. Supplementary Notes

Point of Contact: William Johanson, Ames Research Center, MS 240-8,

Moffett Field, CA 94035-1000

(415) 604-3780 or FTS 464-3780

*Eloret Institute, Sunnyvale, CA 94087
16. Abstract

To reduce the complexities of conventional programming, we have used graphical software in the

development of instrumentation drivers. The graphical software provides a standard set of tools (graphical

subroutines) which are sufficient to program the most sophisticated CAMAC/GPIB drivers. We made use

of these tools and successfully developed instrumentation drivers for operating CAMAC/GPIB hardware

from two different manufacturers: LeCroy and DSP. Our paper will present the use of these tools for

programming a LeCroy A/D Waveform Analyzer.

17. Key Words (Suggested by Author(s))

GPIB

CAMAC

LabVIEW

Instrument driver

18. Distribution Statement

Unclassified-Unlimited

Subject Category - 61

19. Security Classif. (of this report) 20. Security Classif. (of this page)

Unclassified Unclassified

NASA FORM 1626 OCT86

21. No. of Pages

12

For sale by the National Technical Information Service, Springfield, Virginia 22161

22. Price

A02

