CHARLES UNIVERSITY PRAGUE

Small Program For Fast Data Acquisition Of CAMAC
And Other Devices On PC ISA bus.
P. Kodys', J. Broz, Z. Dolezal

Institute of Particle and Nuclear Physics
Charles University, Faculty of Mathematics and Physics
V HoleSovickach 2, CZ 180 00, Prague 8 — Troja, Czech Republic

Abstract

A new data acquisition program for personal computers with Windows operating
system has been built at Charles University van de Graaff laboratory. It allows fast
data acquisition from CAMAC and other PC interface cards using interrupt or polling
mode via several types of crate controllers, basic on-line analysis and visualization of
acquired data in graphs and histograms. The program is written in combination of
MSVC++ and ROOT macros and offers easy customization to individual user
requirements via external configuration files, without need of recompilation.

In the presented paper a detailed description of the program concepts and features is
given. Program was extensively tested with several combinations of hardware and
software, and results of the tests are shown at the end.

! peter.kodys@miff.cuni.cz

1. Introduction

The data acquisition (DAQ) system was built in the Van de Graaff accelerator
laboratory of Institute of Particle and Nuclear Physics, Charles University, Prague for
the purpose of the N-D Polarization Experiment to measure coincidence of four
neutron detectors with one alpha detector. This means readout of approximately 20
CAMAC channels. An extension of DAQ to other PC devices is possible and easy,
and it was tested by digital I/O interface PSD4848A. The main function of DAQ
software is to move data from detectors and analog electronics via digitization part to
the computer, save data to disk and display most important on-line results. Secondary
requirements are to provide auser-friendly navigation that is understandable to the
unqualified ground crew working in shifts.

Previous versions of our DAQ system used following platforms:

1. Mainframe computers (SM EP) with the programming language Fortran

2. PCswithMSDOS system and Borland C++

3. PC'swith MS Windows NT/2000 system and M S Visual C++ 6.0 (without
on-line monitoring plots)

All versions of DAQ software enabled secure saving of data in older systems (DOS)
and old PC architecture (up to Pentium2) without any feedback about status and
quality of acquired data The version 3 of DAQ software has a non-trivia
modification for CAMAC communication card and multi-parametrical spectra DAQ.
Special conditions are available for on-line monitoring of values, their calculations
and gtatistics. However, this version does not enable on-line histogram monitoring.

The objective is to guarantee data saving to more than one data storage for long-time
experiments. Data will be saved with respect of free space on the disks. Users should
be allowed to change many of the DAQ parameters and DAQ sequences in the
configuration text files and run it without program compilation and rebuilds.
Initialization sequences and self-monitoring utilities are included in main functions of
the program. The multitasking and multithreading features of system are very useful
for supported tasks, such as additional parallel off-line monitoring of DAQ status and
data, backup of data files and connection to network.

These requirements served as background for development of the current DAQ
software, which was built with respect to the state-of-the-art possibilities of PC
hardware, operating systems and modern analytical programs.

2. Tasks and Conditions

Figure 1 shows standard scheme used for data acquisition in particle physics.

DAQ System
Physical Detector i
_ 12 5 Electrical
Experiment Preamplifiers Signal Processing
.

l

Digitization

el S

On Line Monitoring

Off Line Analysis Save to Disk AT Data Acquisttion
Results Backup
Spectra

Figure 1 Data acquisition scheme

Physical experiments generate electrical signals, which are amplified and processed in
analog electronics modules. Digitization units such as Analog-to-Digital and Time-to-
Digital converters prepare signals for export to PC via eg. CAMAC CC16 (Wiener
[1]) or KKOO09 (Dubna [2]) interface or PC digital I/O interface cards such as
PCD4848A. PC interface generates usually interrupt signal and interrupt in computer.

In the following the requirements and tasks which individual program parts should
fulfill are listed.

a. General

Operating system must ensure long time stability. Multitasking and multithreading
system will be useful for support of parallel on-line monitoring of DAQ status and
data, backup of data files and connection to network.

Software used must support quick DAQ processing, complex data processing —
statistics, calculations. Very useful is graphical support of histogram and graph
generation, programmable interface and possibility to customize to individual user
requirements.

Chosen program concepts are summarized in the following points:

=

Use of trusted standards (used in physics community)

Program controlled by external configuration modules to enable non-

programmers to change DAQ mode and some conditions

3. Data output format compatible with further off-line analysis inside MS
Windows or LINUX (ROOT data format)

4. All important configuration values and actions must be saved automatically to
alogbook file

5. Structuralism and comments in SW for clarity and continuity of SW

operations and applications

User-friendly environment

Quality documentation and help support

N

No

b. Data Acquisition

Data acquisition part should be based on several important aspects, such as work with
PC interrupts generated by ISA bus, high communication speed with PC interface
card (CAMAC PC16, PCD4848A), secure and efficient data saving, the maximum
possible independence from other system activities, modularity to amend specialized
SW modules changes at DAQ HW and separation of functional levels in SW for
independence from used communication HW. Program must enable backup of data to
more than one place for long time experiments. High rate of DAQ should enable to
run on-line monitoring and slow control activities without freezing.

c. On-line Monitoring and Slow Control Activities

On-line monitoring and slow control activities should never affect the DAQ speed.
Required tasks for this part are:

1. Setting up and testing the measurement and DAQ devices
2. Display of:
a. History of DAQ speed, error rates, statistics, etc.
b. Cross coincidence tables
c. one-dimensional (1D) histograms and two-dimensional (2D) scatter
plots of spectrawith special conditions
3. Preliminary background subtraction, peak areas.

3. Selected Tools

For the compatibility with earlier experience, the Windows operating system was
preferred. Win NT and Win 2000 were selected for their stability.

Selected software should consider present status of our workgroup experience (see
Introduction part) and modern trends. Finally, we have chosen following software for
programming our DAQ system:

ROOT (ROOT Development Team [3]) - standard and complex data
processing routines, including standard CERN libraries, full compatibility with
C/C++, support of C/C++ quick modules, multiplatform SW: LINUX, MS
Windows, easy transfer of ROOT data files and processing macros between
different platforms.

Microsoft Visual C++6.0 (Microsoft) — fast communication driver support,
fast procedures, specialized quick SW modules, prospective, dependable,
quality design development, feasibility of special requirements for DAQ, fixed
precise timer, computer interrupts, multitasking, multithreading, hardware
driver control, dynamic libraries building

4. Program Structure Description

a. Blocks and Encapsulation

Block arrangement of DAQ is shown in Figure 2. Data acquisition core part includes
DAQ cycles connected via communication driver block to ISA bus driver and
interrupt driver of PC card interface. Another part of software is connected to slow
cycles, which are working in “soft” regime i.e. with respect to main DAQ cycle and
basic data processing operation (calculations, saving, data transfer). Slow cycles
ensure visualizations, histogram filling, control evaluation etc.

The individual layers (ISA bus driver, PC card interface driver and DAQ “hard”
cycle) are strictly isolated from other software functions such as on-line monitoring.
The ISA bus driver determines read/write/interrupt speed. PC card interface (for
CAMAC or other special cards) driver sets type of communication hardware and its
communication protocol.

s EEsEss s s EEE

DAQ Arrangement

Hardware &

Software Line

Electronic Line

== Network

Interface

-

]
1
T ™

CAMAC Crate
Controller

r ¥

Digitization
In CAMAC Cards

-

Analog Cards
In NIM

1

n

v
Off-Line
Analysis

On-Line Preview And Monitoring

Data Acquisition (DAQ) Core
r

Communication Driver

+
Y Y ¥ mppererpereepermepeeepepee

PC Driver
DAQ Program
o o
—» Data Flow
<+ Command Flow

Figure 2. DAQ softwar e block architecture

L S —————

Data Acquisition (DAQ) Core

Start
Monitoring r/Contrm\’ Configuration |
Windows ‘ Windows Windows ‘
4 y "
.. Driver
i Activation :
Save Results “\1 I r
< Run DAQ
>
5
: 1/
2% ek
@ //%/ Real Data DAQ
Q m@ Run Once DAQ Com;lzguratlon
g - iles
O(%/’ ata Slmulatlon
g on Random Simulation
< 'Older Data Preview

Run

- Check Preview Fields
- Calculations
- Fill Histograms
- Refresh Windows
- Check Size of Fields
- Check “Stop”

BupoyuoN

=

Wait Interrupt

(IRQ Regime) Polling

T P

- Read Data

- Initializing

- Save Data

- Fill Preview Fields
- Check Size of Fields
- Set “Stop”

- Wait For Next Event

Logbook

Preview Plots
Files

Data Files

Figure 3. Structur e, data and command flowing in DAQ program

b. Data Acquisition Part

Data acquisition can be run in two modes: interrupt and polling mode. Interrupt mode
uses standard PC interrupts generated by PC card. Polling uses quick cycle (Figure 3
red cycle) for looking to specific place in the memory and for checking if the system
is ready for reading data event. CAMAC system generates automatically a signal that
the system is ready for data reading (Look-At-Me — LAM), and this signal starts
generation of interrupt in PC via PC card, or sets flag in PC card memory. Data
acquisition was written in a C++ code strictly in C++ dynamic link library (dll).
During DAQ, the program communicates with functions for data saving, control
commands and statistics calculation in slow cycles. Special data files are shared with

other parts of program, ROOT commands, and analytical part.

DAQ commands are divided to groups:

1. Device initialization (presets, configurations), which runs
once in DAQ start and in slow periods.
Sequences for checking if device isready for reading.
Sequences for data acquisition reading.
Sequences for reset of device for next event.
Sequences for self-calibration or device quality testing, if
enabled. It isrun in slow period.
Number of commands in all sequence partsis not limited.

agrLODN

c. Statistics and Monitoring Part

Statistics calculations are part of quick DAQ cycle. Functions include cross
comparisons, time dependent changes, efficiency, and area calculations. Results are
filled to variables shared by visualization part. A high PC performance is very helpful
at steering this part, especialy if DAQ rate increases above 40 000 read/write per
second.

The monitoring functions use “slow” (slow periodical) and “soft” cycles generated in
ROOT environment (~seconds), which are run in a free DAQ time and have low
priority. This means, the cycle is “frozen” in case of any problem or an overly high
event rate.

d. Visualization

During DAQ several on-line preview windows are displayed. ROOT tools were used
for a full visualization, including a command line window for manual changes and
instant interventions. On-line review windows show graphs of time-dependent
changes, histograms and scatter plots. This part is built up on statistics and monitoring
variables. The visualization was built in ROOT macro and some of the ROOT objects
and variables are created and filled in a dynamic link library (dil). Not all library
variables are shared with ROOT.

e. Data Acquisition Control

The data acquisition control is organized in five levels:

1. Configuration external files used for control of main DAQ
parameters and monitoring windows setting. Changes are
made by editing of configuration files and reloading
(restarting) program.

2. Top-level control using ROOT control tools, used for running
of main actions, selection, preview and setting of DAQ
parameters and different regimes, mirroring the control
described in point 1. More details are in “Program Control
Structure” section.

3. Specia interactive procedures are given, which are set by
navigation buttons within the window area, e.g. in spectra
analysis. axis calibration, spectra detail editing and analysis.
The navigation is user-interactive and partly saved.

4. The main DAQ cycle is user-controlled by a “STOP/PAUSE”
window, which is an external object connected to a
semaphore file for quick DAQ cycle.

5. Expert users may use the possibility to inspect and change
any variable and object in ROOT environment and shared
variables and objects in a mapped C++ dynamic link library.
A command line window of ROOT is suitable for this control
level.

f. ROOT and MSVC++ |Interconnection, Remarks on
Compilation

Most important DAQ cycles and all quick processes were implemented in C++
dynamic link library (dll). The sharing, communication and control of this dIl module
is ensured by an interconnection with ROOT environment. The dynamic link library
must also share ROOT objects by their mapping and compiling. The ROOT software
structure fully supports this interconnection.

The quick DAQ cycle works with only C++ variables and functions without
interconnection with ROOT shared variables and functions. Quick DAQ functions fill
statistics buffersthat are used for shared objects.

The monitoring part in slow DAQ cycles uses these shared objects for visualizations.

One remark on the process of program compilation may be of interest:
Since a quick DAQ cycle part does not share an environment with ROOT, the created
list of shared variables and functions must exclude the group of quick DAQ variables
and functions. For this a 3-step compilation process was used:
* Exclude quick DAQ variables and functions and save sources.
» Create shared interconnection file (automatically by ROOT program
rootcint.exe).
* Include quick DAQ variables and functions and compilation and build
dynamic link library.

g. Program Control Structure

The program control structure depends on program application. Two basic
applications are used: N-D experiment and spectra DAQ.

The program opens typically two basic windows and selected monitoring windows
upon starting. Basic windows are the command line window and the main control
menu.

Program control structure for N-D experiment is depicted in Figure 4.

(3
koha Dt Masdmun
=

Dt Pl

=
[u BRI A b

Ploc bwind, o2 TO=
=

P 1T AT

Figure 4. Program control menu structure for N-D experiment. Starting menu isin yellow
border.

Main menu typically contains automatic or manual “step-by-step” activation, restart
and deactivation of drivers and main functions of program, and configuration of
variables. An important function, which is useful in the setting and calibration phase,
is to run DAQ once. In a standard data acquisition process, control functions are
transferred to the “STOP/PAUSE” window. Simulation and special functions (speed
tests) are also in main menu. Help in html format is available.

h. Program Configuration Structure

The basic configuration method of the program is via configuration files. This method
guarantees a simple customization of the program to many different conditions and
configurations. The program can be run without compilation and rebuilds.
Configuration files contain settings of paths, identifications, simulation flags, driver
settings, DAQ setting, all DAQ commands (sequences), and monitoring and preview
settings. Configuration of reading channels is also located in external file. Example of
DAQ commands for setting NFA (standard form for CAMAC addressing) is in
Example 1.

10

//NFA Settl ngs khkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhhhhhkhkkkkkk
/1 Sequences: Position N F A Val ue

[/ Position-> -1:. wite

// Position-> 0: read

// Position-> 0<: read & save
CMDAQSEQDAQM 119 20

CMDAQ SEQDAQL 5 17 2 0

CMDAQ SEQDA@ 6 17 2 1

Example 1. Configuration file for format of NFA CAMAC addressing

This format enables to write “Value” to address on an address range associated to
aCAMAC card or to read BYTE or WORD from address to an ROOT ntuple®.
Resulting values of aread event are put to specific position in a ntuple tree and saved
to file in aROOT standard format. The ntuple format is easily customizable to
individual user requirements using external configuration file in form, as shown in the
following Example 2.

nt upl e| | ntupl e nane | Wnd |

Col | Canac | Channel | I ndex| Conment

0 Event EVT 0 Oder in file

1 AD413A 0 AEN 1 AD413A card, channel 0
2 AD413A 1 AD 1 -1 AD413A card, channel 1
3 AD413A 2 AD 2 -1 AD413A card, channel 2
4 AD413A 3 AD 3 -1 AD413A card, channel 3
5 TDC4A14 0 TOFO 2 TDCA14 card, channel 0
6 TDCA14 1 PSDO 3 TDCA14 card, channel 1
7 TDCA14 2 TOF1 4 TDCA14 card, channel 2

Example 2: Configuration file for format of reading channels, where unsaved channels obtain
“Wind Index” =*“-1", saved channels have in thisindex the number of their position in ntuple,
and ntuple column name is shown in “ ntuple name channel”.

5. Program Applications
a. N-D Experiment

Introduction

Figure 5 shows experiment arrangement in our laboratory. The experiment’saim isto
measure cross-sections of fast neutrons scattered off a deuteron target. Neutron beam
is produced from the T(d,n)a reaction via an associated-particle method, i.e. a-
particle ejected from the production target together with neutron is registered in
coincidence with the neutron and serves as a tag of neutron. Anode and dynode
signals from 4 neutron detectors (photomultipliers) are collected together with a
signal from the a-particle detector. Individual signals are then used to define the
coincidence, time delay between the signals and to discriminate background fromy's

2 ROOT ntupleisamatrix of columns of numbersin FLOAT format, each line of matrix is often called
“event”.

11

from the useful neutron signals. Both analog and time to digital converters are used,
plus several scalers. In total about 20 signals are digitized in CAMAC modules.
Further details about the system can be found at [4] and [5].

DAQ System
Van de Graaff
TR TERNRIIN Accelerator —
ne- = D | Source of Particles
GHH\\\H\\H\\\HHHHHHHHHHHHHHHHH Physical N p Deteclt?r
Experiment reampliners
Ly 1'
Signal Processing
in NIM

Digitization
In Camac

l

Lok

On Line Monitoring

Off Line Analysis Save to Disk | Filtering _=o Data Acquisition
Results Backup N =
Spectra =

Figure 5. N-D experiment scheme

Electrical signal from detector preamplifiers is conveyed to NIM analog units for
basic processing. CAMAC digitization units such as AD413A (EG&G Ortec), C414
(C.A.E.N.), AD2249A (LeCroy), NL2305 (Tesla) and NL2402 (Tesla) prepare signals
for export to PC via CC16 (Wiener) or KK009 (Dubna) interface and generate
CAMAC - LAM signal and interrupt in computer.

Program Description

The N-D experiment requires special monitoring windows with calculated values and
1D and 2D histograms. It is necessary for detecting possible DAQ problems — e.g.
loosing of detector high voltage, burnout of target, loosing of primary particles or
changes in magnetic fields. All windows contain buttons for clearing plots and for
saving results to postscript file.

There are two windows showing calculation values: parameter tuning monitor (Figure
6, all windows are colored but in the paper the black-and-white screenshots are shown
only) and standard on-line monitor (Figure 7). Parameter tuning monitor (Figure 6)
shows frequencies of all coincidence combinations. Window shows tables of cross-
references used in parameter tuning to optimal working point.

12

n=-n Experiment - Tuning Monlitor

Run 8 Event0 DAQTIime 0.00 Sun Feb 16 17:14:25 2003

In Event Block 100 events In Time Region 1 seconds

Alpha \ noO < 10 OK = 4085 Alpha \ n0O < 10 OK = 4085
Alpha< 10 Q 0 [¢] Alpha< 10 4] [¢] 4]
Alpha OK o o] Alpha OK o o] o]
Alpha> 8181 o] 0 [¢] Alpha> 8181 ¢] o]]
Alpha \ nl < 10 OK = 4085 Alpha \ nl < 10 OK > 4085
Alpha< 10 Q 4] [¢] Alpha< 10 4] [¢] [¢]
Alpha OK o] 0 o] Alpha OK 0 o] o]
Alpha> 8181 9] 0] Alpha> 8181 o o]
Alpha \ n2 < 10 OK > 4085 Alpha \ n2 < 10 OK > 4085
Alpha< 10 o] o] Alpha< 10 o o] o]
Alpha OK [0} 0 (¢} Alpha OK 0 [¢] 0
Alrha> 8181 o] 0 0 Alpha> 8181 0 0 0
Alpha \ n3 < 10 OK > 4085 Alpha \ n3 < 10 OK > 4085
Alpha< 10 o] 0] Alpha< 10 0] o]
Alpha OK 9] 0 ¢] Alpha OK o]]
Alpha> 8181 Qo 0 [¢] Alpha> 8181 0 [¢] o]
Alpha \ all <n_min OK >n_max Alpha \ all <n_min OR >n_max
Alpha< 10 o] 0 [¢] Alpha< 10 0 0
Alpha OK 0 0 0 Alpha OK 0 0 0
Alpha> 8181 o] o] Alpha> 8181 o [¢]]

Figure 6 N-D Experiment — Parameter Tuning Monitor

Program settings are displayed on the standard monitoring window (Figure 7) that
contains sub-windows:

1. Main Setting — shows all parameters from configuration files

2. DAQ sequences — show all DAQ commands

3. History plot of event rate

4. Statistics Monitor - summarizes cross values from parameter
tuning monitor

5. Event Monitor — Number of events and a single event

monitor

13

Run 9 Event 38700 DAQTime 10.76 Sun Feb 16 17:16:41 2003
Self Test Errors: 0 From 2 (simulations)

Main Setting
Proﬂle NDFuII

g‘\{.l rs\peteroot\

g.luhserslpmrlrootlcfgwl
a:
dJuserstetellrootldatal
Tabl

PathostScnpt
d:/users/peter/root/|

DataName: NDD9 pe/

DrvSimulation: 1
DataSImulation: 1
RandomSimul: 0

ata Type: root
Self Test Period 6 ms
Enable IRQ 0
Termination: By Hand

TVIcHW32 2
Wi

Timer I1'|¢:k 1%00?, "63
lax Time 8
Mex Blrsrtime 1
Max Event 10000000
Max Events In Flle 10000
Max Burs1 EV 100
IRQ Burst: 100

Win Refresh Period 2 s
Each 1 Event->Preview

Byl Ol

User: Peter
"Standara nn-Experiment]M

Save Window To Postscript
Save Graph To Postscript
Preview Older Data - Set Run Number
Preview Older Data - Set Whole Name
DAQ Sequentions Event Monitor L
e b soviaoneaon No. Of Events 3870 Statlstics Monltor
}?’,;g;uo b AD413A_0 (4x)
12/26/0 0 0 00 0
13/26/0 0 0xo Value Area Scalers Scalers Scalers
ljéléz(m'-% ax(o) TDCA14 0 59 8% inrange ratio sum/bl. avr/sec avarage
R
3980 5330 53 .
LAM CLR (1 Alpha: 20859 0.54 882 3456k 258.7k
O oso)‘(oi 3980 5330 3080 sod0] AP
;%E}WD Rig<lenle Detn0: 29614 142 11360 8755.6k 10783.0k
<’ <’
32%% Eg:i%’? R93%420-%9%, Detn1: 29614 1.00 11360 8755.6k 10783.0k
< <
“ﬁ‘ﬁ% Eggi% 682 3620605 262 Detn2: 29614 1.00 11360 8755.6k 10783.0k
12<170207 R31<13/212 Detn3: 29614 1.00 11360 8755.6k 10783.0k
19163 R3<13BR || NL2305 0 3
15<16272 B34<14211 15023 15023 50231 Events: 38700 Eff:5.68 S:45442 $:35022.415:43132.0k
< <
15;51%2 W remnesiond 0 1o ax) e Evisec: 3597.04 Clock: 341.61 361666.20267889.11
W 15/0,00x0) Ni;2305 20 (4x) DAQtime: 10.76s Coinscl. 0.00 000 0.00
Hﬂn 535(0XFFFF)
A{&VG‘” orders ‘ﬁ Alpha Eff . . Det 0 Eft Det1 Eff ! Det 2 Eif Det 3 Eft

Figure 7 N-D Experiment - Standard M onitoring Window

Second set of monitors includes 1D and 2D histograms of several combinations of
readout channels. Figure 8 shows 2D histograms, 1D histograms are shown in Figure
9. Figure 10 shows possibility to change windows arrangement and show most
important plots in detail.

+Scatters For All Detectors - Profile NDFull = IEIIﬂ
Eil= Edit Wiew Options. Inspector Classes Help
n-n Experiment - Scatters For All Detectors 53 ve WAndow To Portierpt |

Fun 2 Ewent 23200 DAGTImMme 911

Fri foag 03 A7:02:32 2002

Clear Hirtogram s

Figure 8 N-D Experiment - Monitor of 2D Histograms

14

ToF,PSD,QT,0D0 Deriving For All Detectors - Prafile ROFU| - |D!ﬂ

Bl Edit Wiew Options, Inspector Classes Help
r-n Experiment - ToF PS0,QT, Q0 F Ba e Windot: To Postaript |
Run 2 Event 34400 DAQTime 927 i Sivar W ogram s I
Fri Aug 03 17:02:32 2002 E —~

lj:':l

=108 X

Eile Edit Wigw Options Inspector Classes Help

r-n Experimernt - ToF,PS0,GT, G0 Hpha] tmript |

Run 2 Ewert 34400 DAQTIime 9.27 w5 = I

Fri Aug 03 17:02:32 2002 Eﬂﬂﬂ —
1 :
3 | 1200 -

F50 - ToF - Oet 0 Wl &
W F soin -
Emuu - [

c - B

sann |- goun |-

1200 - aann

{00 [~ anun :— I

1) = uu- W00 2000 000 4000 SU00 G000 FOuD o

E o
B
gL
am -
e
200 -
u L L L L L L L
|"| u LT} an kLT ELLT) E L] L 1] TN \':'.JI.'V"'I
0 T 000 FN0 &0 SN0 G FNO g0) e

Figure 10 N-D Experiment - M onitor of 1D Histograms - Details

15

b. Spectra Measurement

The spectra measurement includes a set of special setting and monitoring windows.
The program supports also 2D spectra preview.
Some features of on-line spectra monitoring are:
1. Save source dataevent by event for later off-line analysis
2. On-line preview of 2D spectra
Some features of simple spectra analysis are:
1. Automatic comparison with tabular spectrain graphical regime
2. Automatic and manual peak detection in graphical regime, manual
correction are possible
3. Automatic peak fitting and standard parameter calculations (net
area, background subtraction)
4. Analysisin sub-range regions
Main monitoring windows with all DAQ spectrain 1D and 2D form are depicted in
Figure 11. Individual spectra editing and analyzing is shown in Figure 12. Detail
description of spectra measurement and analysisisin [6].

s+ A03D Histograms For All Detectors - Profile AG30FLl By [m] BS]

Eile Edit Wew Options, Inspector Classes Help
AQ3D Experiment Szve Window To Postscript’ |
Run 143 Event 64900 DAQTime 8.08 Sat Aug 24 09:40:31 2002 Llear Histograms |

Show And Sawve Results I

. + Htogram
Edit Histogram | Edit H|stogram4 o e rais Edit Histogram:

ra Time

200

160

100

ap =0 400 4Fo0 4 1d0 4=0
ne

' Edit Histogram]

Figure 11 Spectra Measurement - Main Monitoring Window With All DAQ Spectra

16

;:i';;.}AQSD Histograms For All Detectors - Profile A030Full — I I:II XI
Eiler Edit Wiess Dprions. Inspector Classes Help

| Histogram Energy 1 I Sub Rangel Refresh I Statistics I Log- Scalel Save Return I
Calibration| autoset | List | mada | petete | Deletean |

mid=znas. 1

H= 8500 mid= RS AAE E0E.2 mid=2ra7.8 H
D M TEere mae=ares.a N EELTERS

Events
T
‘33

250

200

150 [Rk

100

50

e e G N AT EEHn e

Figure 12 Spectra Analysis— Spectrum Display

6. Readout Speed Tests

Program was extensively tested on several types of computers, interface cards and
with several versions of drivers. Its performance satisfies the requirements.

Two basic arrangements were tested: readout with CAMAC interface (Figure 13) and
PC ISA digital 1/0 interface card PCD4848A (Figure 14) (readout of 48 TTL logical
signals). A/D converter was used also as LAM signal producer. Three different
CAMAC controllers were used.

CAMAC Crate Controller
AD413A

(EG&G Ortec) | —

CC16 PC16(turbo)
KK009 PK009

Gate 4 Input

Pulse

Generator

Data Acquisition
Program

Figure 13 CAMAC DevicesUnder Test

17

Digital I/O Interface
Output

et PCD4848A

Data Acquisition
Program

Figure 14 Digital 1/0 Device Under Test

Tested PC interface cards:
1. CAMAC crate controller: PC16 + CC16 (Wiener), Interrupt 5, port access,
8 CAMAC cycles per riw
2. CAMAC crate controller: PC16turbo + CC16 (Wiener), Interrupt 5, High
Speed regime (AT Bus regime decrease speed 1.3x), port access,
2 CAMAC cycles per riw
3. CAMAC crate controller: PKO0O9 + KK009 (Dubna), Interrupt 2, direct
memory access (DMA), 1 CAMAC cycle per r/w
4. PC ISA interface: PCD4848A, Interrupt 5, port access — not CAMAC
controller
Three types of PC ISA bus connection were tested. The simplest solution with direct
addressing of driver memory space is possible only in DOS and partly in Windows
95/98. For Windows NT4.0/2000 there are several drivers available; we use
TvicHW32 [7]. Used drivers have two different working modes. “soft” and “hard”
access.
Tested PC | SA busdrivers:
TV2: TvicHW32 2.0 (1997, WinNT, W2K)
TV5: TvicHW32 5.0 (2001, WinNT, W2K)
"soft" access: feature of TvicHW driver - quick access to port without test of correct
assignment to port
"hard" access. feature of TvicHW driver - slower access to port with test of correct
assignment to port
Testing sequences:
read (CAMAC: NF(0)A(0))
write (CAMAC: NF(16)A(0))
cycle = write(0) + read + write(1) + read +count Number of errors (should be always
zero)
Execution time was measured in microseconds for all tests: read, write and cycle. The
results for different configurations used are listed in Table 1.

18

Table 1 Theresults of DAQ speed for different testing configuration

Execution Time [ps] [kEvSeP;]ic/l se]
\ Interface \ Read \ Write \ Cycle \ Read \ Write \ PC Configuration
PC16 23 | 23 | 92 | 40 | 40 Pe”i';é“MZ éﬁ')l" Hz
PC16tur 62 | 602 | 245 | 160 | 160 Pen?;&;nl\/lz éiﬁ\')l" Hz
PK009 30 | 23 | 110 | 330 | 430 Pen?;&;nl\/lz éiﬁ\')l" Hz
PCD4848A* | 22 | 22 | 9 | 450 | 450 L Loz
PCD4848A* | 1.9 | 19 | 7.7 | 500 | 500 QJ'\SAEIDHDZ"‘?%\TAM&ZE

* amore modern card produced in 2001, read/write BY TE, port access

From the test results we have collected the following conclusions:

TvicHW32 driver: version 2.0 is approximately 10% faster than version
5.0.

Get/set memory: "soft" access is approximately 10% faster than “hard”
access.

Get/set port: "soft" access is approximately 4 times faster than “hard’
access — slightly depending on PC hardware.

Speed slightly depended from PC power and from available memory
Direct memory (DMA) operations are about 2 times faster than port
operations (was not tested for DOS).

Driver functions get/set memory are approximately 10% faster than
standard C functions “memcpy”

Standard C functions used in DOS (used standard C functions “movedata’
(TurboC++ 1.1, 1990)) and in WIinNT or W2K vyield approximately the
same read/write speed.

WInNT and W2K vyield approximately the same read/write speed.
MSVC++ 6.0 application and ROOT + dynamic link library vyield
approximately the same read/write speed.

Maximum speed of r/w is 330/430 kEvents / sec.

Maximum speed for N-D experiment (about 40 r/w per event): 8/10
kEvents/ sec (KK009, DOS/ WinNT4.0 / Win2000) - results for PC2
Modern PC ISA card PCD-4848A (made in 2001) works without problems
in any PC with ISA bus. It seems that PK009, PC16 and PC16turbo
(manufactured before 1998) are not very good for modern PC ISA bus -
cards have too slow electronics.

Larger memory (256 MB and more) increase multitasking and
multithreading capabilities of DAQ: more monitoring windows and on-line
histograms of multi parametric spectra, parallel off-line data processing,
datatransfers via network to data storage, parallel slow control routines.

19

| SA Bus Properties Remarks

Using crate controllers working on ISA bus is an archaic communication structure in

modern PC. Several problems have been observed:

+ Itisimpossible to work in emulated DOS under Windows because ISA bus is not
connected directly to processor (Pentium2 and higher versions use PCI bus and
north bridge for ISA bus connection, therefore different addressing [8])

+ Possible problems with card installation: problem with BIOS conflicts, too much
time needed for communication with board.

+ Interrupt number — there is a possible conflict with mouse, network card, sound
card, GPIB card, etc.

+ Some computers (motherboard, processor, ISA architecture...) do not support
communication with PC driver or support it only partialy, perhaps due to an
overly loose | SA Bus specification.

7. Discussion of Rate and Stability

The achieved DAQ speed can be increased only with difficulties. The main limit
seems to come from the hardware used. The frequency of the CAMAC internal clock
is 1 MHz and it involves a minimal reaction time higher than 1 microsecond. The
DAQ speed was achieved 1.9 microseconds per | SA-bus-read/write; it is about 50%
efficiency of the CAMAC system (1 microsecond bus cycle). The comparison with
assembly language direct algorithms under DOS system for the same hardware
configuration [9] shows avery similar efficiency of DAQ.

Possible rate fluctuations in current DAQ system are due to the use of Windows
NT/2000 system, which runs system service programs at random intervals. The on-
line visualization and service functions may also cause some rate fluctuations. A more
stable rate can be achieved in DOS platform — of course without on-line monitoring
support [9]. Rate fluctuations are occurring only at highest DAQ rates. Resulting
fluctuations in dead time can be estimated using hardware scaler.

8. Conclusion

The presented DAQ program enables a high efficiency of data acquisition together
with on-line monitoring calculations, histograms and scatter plots. Editing
configuration files without recompilation of main DAQ program enables easy
modifications of DAQ and monitoring conditions. Further supporting and servicing
activities such as automatic creation of logbook, data backup/transfer, and messaging
support about DAQ status are performed during the DAQ. The used ROOT platform
supports flexibility of on-line monitoring functions and plots.

Detail information about program including downloadable version can be obtained at

[6].

20

9. Acknowledgements

The project was granted by the Grant Agency of the Czech Republic, grant No.
202/00/0899. The authors want to express special thanks to Peter W. Phillips and
Gareth F. Moorhead, whose SCTDAQ program was very inspiring for this project.
Special thanks to Jan Jakubek, Miroslav Morh& and Vladislav Matousek for
comments on WIinNT drivers. We used a driver made by Victor Ishikeev to whom we
are also very grateful. All critical comments from our colleagues, especially Vit
Vorobel, Alex Tsvetkov and Michail Ivanov also helped us greatly.

10. Bibliography

[1] http://www.wiener-d.com

[2] http://nuweb.jinr.ru/~churin

[3] ROOT web pages:. http://root.cern.ch

[4] Wilhelm ., ParsaM., Dolezal Z., Nucl.Inst.and Meth.A317 (1992) 553

[5] Broz J. et al.. Zeitschrift fir Physik A354(1996)401

[6] CAMACdag web pages.
http://www-ucjf.troja.mff.cuni.cz/~kodys'Work/Camac/root/UserGuide

[7] Victor Ishikeev : TvicHW32 driver, http://www.entechtaiwan.convtvichw32.htm
[8] Dekker E. N., Newcomer J. M.: Developing Windows NT Device Drivers,
Addison Wesley, Feb 2000, p. 385

[9] Jan Jakibek, private consultation

21

